Theory and Initial Results of AENeAS

Sean Elvidge, Matthew Angling June 29th, 2016

Types of Data Assimilation

Sequential Methods:

- Kalman filter (KF)
- extended Kalman filter (EKF)
- ensemble Kalman filter (EnKF)
- ensemble Kalman smoother (EnKS)
- Particle filter (PF)

Variational Methods:

- Three dimensional variational method (3D-Var)
- Four dimensional variation method (4D-Var)

Hybrid:

 Evolving covariance matrix in 3D-Var or 4D-Var via ensemble approximation

Ensemble Kalman Filter (EnKF)

- First introduced by Evensen (1994) as a Monte Carlo approximation to Kalman filtering
 - EnKF is a sequential data assimilation method that uses an ensemble of model forecast to approximate the model mean and covariance matrix
 - Ensemble is updated with every analysis to reflect information provided by the observations, and is evolved using the forecast model between analysis
- Example uses of EnKFs:
 - Short-range/global NWP
 - Earth core/middle-atmosphere/Martian GCM
 - Global weather/climate/ocean prediction

Kalman Filters

• Traditional KF Eqns:

$$B = MAM^{T} + Q,$$

$$K = BH^{T}(HBH^{T} + O)^{-1},$$

$$x_{a} = x_{b} + K(y_{o} - H(x_{b})),$$

$$A = (I - KH)B.$$

- Where: *B* is the background model covariance matrix *M* is a linear model
 - *A* is the analysis covariance matrix
 - Q is the model error covariance matrix
 - *K* is the Kalman gain
 - H is an observation operator
 - x_a is the analysis state
 - x_b is the background model state
 - y_o is an observation vector.

For 'large' systems these equations become very computationally expensive.

Ensemble Kalman Filters (EnKF)

• Ensemble KF Eqns:

$$B = \frac{1}{k - 1} X_b X_b^T,$$

$$K = BH^T (HBH^T + 0)^{-1},$$

$$x_a = x_b + K(y_o - H(x_b)),$$

$$A = (I - KH)B.$$

Where: X_b is the ensemble perturbation matrix k is the number of ensemble members.

EnKF – Assumptions & Considerations

- Assumptions:
 - PDF of errors is Gaussian
 - Model errors are small compared with errors in initial condition and parameters
 - Observations can be represented in the ensemble
- Considerations:
 - $\frac{1}{k-1}X_bX_b^T$ is an approximation to the 'true' background covariance matrix
 - The greater the number of independent ensemble members the better the assumption
 - Errors in sampling decrease proportional to $\frac{1}{\sqrt{k}}$
 - Spurious relationships can be found between variables
 - Possibly due to limited variability in ensemble

Local Ensemble Transform Kalman Filter (LETKF)

Brian R. Hunt, Eric J. Kostelich, Istvan Szunyogh, *Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter*, Physica D, 230, 112-126, 2007

- LETKF assimilates by local volume centred at each grid point variable
 - Area of local volume depends on model dynamics and assumptions of correlations between discrete model grid points
- Each observation may be used more than once for data assimilation
- Smaller region makes ensemble space spanning easier
- The algorithm is highly parallel, all grid points can be assimilated simultaneously

Computational Expense

• The "default" EnKF computational cost is:

 $O(s^3 + s^2k + sk^2 + mk^2)$

- where: s is the number of observationsk is the number of ensemble membersm is the dimension of state vector
- The LETKF computational cost is:

 $O(k^3 + k^2s + k(s + m))$

• For s > k LETKF is much cheaper than EnKF

Advanced European Electron Density (Ne) Assimilation System (AENeAS)

- A 4D, modular designed, data assimilation thermosphere / ionosphere model with a physicsbased background model
- Aims:
 - Good nowcasts
 - Background model dependent
 - Accurate and actionable forecasts up to 6 hour ahead

Background Model(s)

- The NCAR Thermosphere Ionosphere Electrodynamics General Circulation Model (TIE-GCM)
 - Version 2.0
 - 2.5 degree resolution
 - Heights ~90 ~600 km
 - Variables:
 - Ne, N, NO, O₁, O₂, O⁺, O₂⁺, He, Ar, Vertical motion, Temperatures, Neutral winds
- NeQuick
 - Topside (~25,000 km)
 - Use control points from TIE-GCM
 - Smoothly attach profiles

Assimilated Data

- Initially, GPS and ionosonde.
 - AENeAS will handle 1 second to 2 hour latency data
 - e.g. NTRIP, IGS, GIRO, COSMIC2 RO
 - 15 minute assimilation window
- Modular design, more data types can be added in the future.

Digisonde and GPS Locations

Initial Testing

- Assimilated 10 GPS receivers over Europe in December 2008
 - Extremely difficult modelling period
 - More information about this time period in:

"A Community Wide Ionospheric Modelling Challenge" Session 5A, Budinich Lecture Hall, Thursday 10:10

- Only used 4 ensemble members
 - No covariance inflation
 - Each member randomly gets value of F10.7, cross-tail potential and hemispheric power (\pm 20% of observation)

TEC Video

Neutral Meridional Wind Video

Conclusions

- New 4D physics-based data assimilation model being developed at the University of Birmingham
 - AENeAS
 - TIE-GCM background model
 - Will initially assimilate GNSS and ionosonde observations
- Assimilates data using a Local Ensemble Transform Kalman Filter (LETKF)
 - Computationally efficient
 - Addresses spurious correlation issues from EnKF
 - Grid points processed in parallel
 - Fewer ensemble members required

LETKF – Theory

- EnKF variants solve the EnKF via differing implementations
- The LETKF approach:
 - 1. Analysis is performed locally in model grid space
 - Computational efficiency & spurious correlation control
 - 2. Analysis ensemble perturbations are obtained from background ensemble perturbations using a transform matrix
 - What transform should be used?
 - See next slide
 - 3. Matrix inverse for Kalman gain is computed in ensemble space
 - Requires use of a known matrix identity
 - $K = X_b \tilde{A} H^T O^{-1}$, where $\tilde{A} = [H^T O^{-1} H + (k-1)I]^{-1}$

LETKF Theory

• Similar to the definition of *B*, we can define:

•
$$A = \frac{1}{k-1} X_a X_a^T$$

• X_a is found via a matrix transformation, namely $X_a = X_b T$

• From classic KF:
$$A = (I - KH)B$$
 so:

$$A = \left(I - X_b \tilde{A} H^T O^{-1} H\right) \frac{1}{k-1} X_b X_b^T,$$

= $X_b \tilde{A} (k-1) I \frac{1}{k-1} X_b^T,$
= $X_b \tilde{A} X_b^T.$

• Thus:

$$\frac{1}{k-1}X_a X_a^T = X_b \tilde{A} X_b^T,$$
$$X_a = X_b [(k-1)\tilde{A}]^{\frac{1}{2}}.$$

• So the transform is given by:

$$T = \left[(k-1)\tilde{A} \right]^{\frac{1}{2}}.$$

