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ABSTRACT 

 
We present a multi-instrumented approach for the analysis of the Arctic ionosphere during 
the 19 February 2014 highly complex, multiphase geomagnetic storm. The geomagnetic 
storm was the result of two powerful and subsequent Earth-directed coronal mass ejections 
(CMEs). The first one was launched from the solar corona on 16 February and the second 
one on 18 February. We focus on effects of such solar-originated geomagnetic disturbances 
on the high latitude ionosphere because our present understanding of the fundamental 
ionospheric processes – particularly during perturbed times – in this region is still 
incomplete.  
 
We employ GNSS networks, geomagnetic observatories, and a specific ionosonde station in 
Greenland and complementary data with spaceborne measurements in order to map the state 
and variability of the Arctic ionosphere. Due to the fact that all the ground-based 
measurements used in this work were collected in Greenland the focus remains on the 
Greenland sector of the Arctic ionosphere (Figure 1, left panel). The sheer size and location 
of Greenland allow ground-based measurements stretching from the deep polar cap to the 
equatorward edge of the auroral oval making it possible to compare directly disparate regions 
(Figure 1, right panel). The ionospheric GNSS-based total electron content (TEC) values [1] 
augmented with ionosonde-derived vertical electron density (Ne) profiles revealed negative 
storm phases, following the first CME commencement, which lasted for several days.  
 



 
Figure 1. (left-panel) Map of Greenland with blue triangles marking the locations of a subset of Greenland 
GNSS stations that have been employed to generate the VTEC maps in this study. Six out of the 18 stations 
were specifically labeled so their locations will be easily identified in later figures. Legend for the station 
codes are as follows: Nuuk (NUUK), Qaqortoq (QAQ1), Scorebysund (SCOR), Sisimiut (SISI), Thule 
(THU4), Upernavik (UPVK). (right-panel) VTEC map over Greenland at 19:15:00 (UTC), 18 February 2014. 
The VTEC values at the ionospheric pierce points are denoted with white circles.  
 
During this phase thermospheric O/N2 measurements [2] demonstrated significantly lower 
values over the Greenland sector than prior to the storm-time and the composition changes 
resulted in F-region depletion. Analysis of changes in the disturbance storm-time (Dst) 
index, auroral electrojet (AE) index, and northern polar cap index (PCN) indicated that the 
negative storm depletion is the direct consequence of energy input into the polar cap [3]. The 
Canadian CASSIOPE (CAScade Smallsat and IOnospheric Polar Explorer) multi-mission 
satellite’s ion mass spectrometer (IRM) measured an increased ion flow in the topside 
ionosphere during the negative storm phase [4], which supports the notion that Joule heating 
may have caused the composition change. Polar patch generation was significantly decreased 
during the negative storm phase. The patches were clearly identifiable by employing the rate 
of TEC index (ROTI) even under superimposed solar-induced TEC gradient conditions [5].  
 
Based on the multiple instrument observation approach and analyses technique, we present 
the physical processes that may be responsible for ionospheric storm development in the 
northern high-latitudes. 
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