Three-Dimensional Modeling of High-Latitude Scintillation Observations

Alex T. Chartier^{*1}, Kshitija B. Deshpande², Gary S. Bust¹, Biagio Forte³ and Cathryn N. Mitchell³

¹ Space Exploration Sector, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel MD, USA. (E-mail: alex.chartier@jhuapl.edu)

² Bradley Department of Electrical and Computer Engineering, Virginia Tech, 1901 Innovation Drive, Blacksburg VA, USA.

³ Department of Electronic and Electrical Engineering, University of Bath, Claverton, Bath, UK

ABSTRACT

Global Navigation Satellite Systems (GNSS) signals exhibit rapid fluctuations at high and low latitudes, believed to be caused by ionospheric refraction and diffraction. This study focuses on the high-latitude problem, where the ionospheric irregularity region cannot be approximated to a thin layer in the direction of signal propagation. The nature of the high-latitude problem necessitates the use of a fully three-dimensional multiple phase screen modeling approach, based on the work of *Rino* [1979]. This study takes advantage of the fortuitous conjunction of EISCAT Incoherent Scatter Radar (ISR) observations and a scintillation monitor viewing the same line-of-sight during an auroral E-region enhancement just after 20:00 UT on 17 October 2013. The scintillation observations are explained using ISR measurements to specify the macroscale environment within which *Deshpande et al.'s* [2014] scintillation model, *Sigma*, is operated. A geometry change is introduced to that model that greatly reduces computation times. Excellent agreement is achieved with the observations, indicating that a plausible irregularity distribution has been identified. The distribution contains a kilometer-scale irregularity superimposed on an anisotropic irregularity spectrum of varying intensity and high spectral index (-4.2). The altitude extent is 95 - 175 km and the intensity varies between 5 - 25% of the background density.

Key words: Ionosphere, GNSS, Scintillation, Modeling, Incoherent Scatter Radar

References

Deshpande, K. B., Bust, G. S., Clauer, C. R., Rino, C. L., & Carrano, C. S. (2014). Satellite-beacon Ionospheric-scintillation Global Model of the upper Atmosphere (SIGMA) I: High-latitude sensitivity study of the model parameters. *Journal of Geophysical Research: Space Physics*, *119*(5), 4026-4043. Rino, C. L. (1979). A power law phase screen model for ionospheric scintillation: 1. Weak scatter. *Radio Science*, *14*(6), 1135-1145.

Acknowledgements

This EISCAT experiment was led by PI Biagio Forte. Data can be retrieved from https://www.eiscat.se/madrigal/. Scintillation data were collected by PI Cathryn Mitchell on EPSRC grant EP/H003304/1 GNSS scintillation: detection, forecasting and mitigation and can be obtained by contacting her.