

GLIMPSE: A GLobal Ionosphere Modeling Prediction and Specification Environment

June 30, 2016

G. S. Bust, R. K. Schaefer P. B.
Dandenault, A. T. Chartier, J. Comberiate
JHUAPL
S. Datta-Barua and D. S. Miladinovich
Illinois Institute of Technology

What can we say regarding the study of the lonosphere, Thermosphere, and Magnetosphere (ITM)?

- "Even though it may not be very important, does not mean its not difficult"
 - > Anonymous Space Physicist
- "Well, why is it so hard"
 - > Cyber/Intelligent Systems person at CEDAR meeting Santa Fe
- Its hard because....
- Study of the ITM SHOULD be important

Why should study of the ITM Matter?

- First order physics: Energy and momentum transport throughout the medium
 - > Energy and momentum input from the Sun
 - > Stored energy and momentum from solid Earth, Oceans
 - > ITM is the buffer between Solar energy inputs from above and Energy transport out and up from below
- Understanding the overall Earth's energy and momentum sources, sinks and transport IS IMPORTANT
- And understanding ITM is a necessary and important piece of understanding the Earth's overall energy and momentum flow

What Research Do we need to carry out to understand the Energy and Momentum Dynamics of ITM

Theory

- > Our fundamental laws of behavior
- > Test

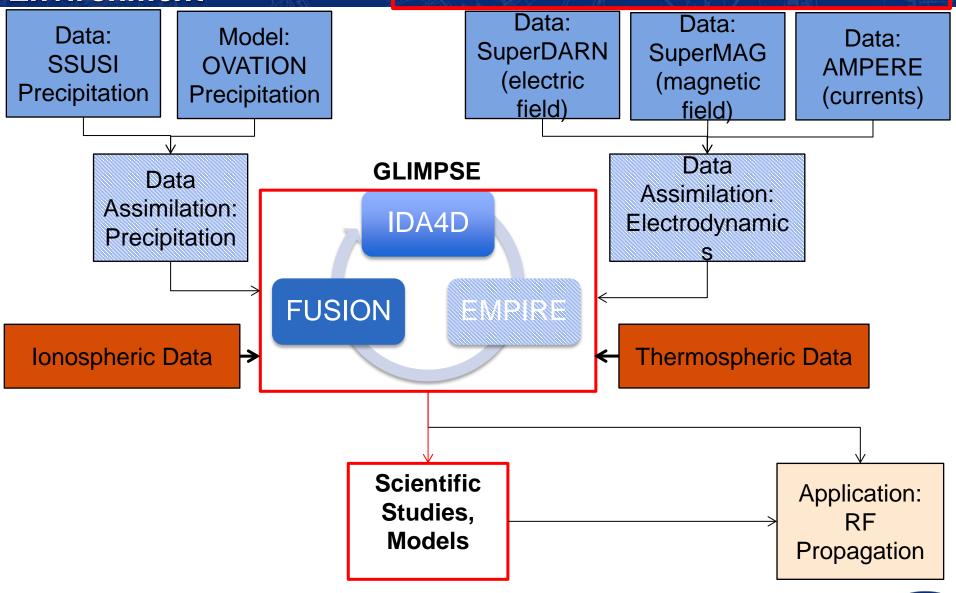
Modeling

- Mathematical / numerical approximations to theory
- > Validate / understand approximations

Measurements / observations

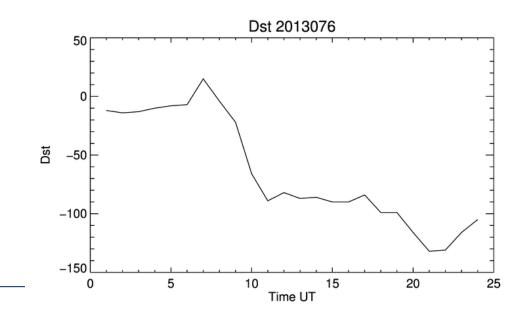
- > Realistic representation of errors
- Space-time resolution
- > QC

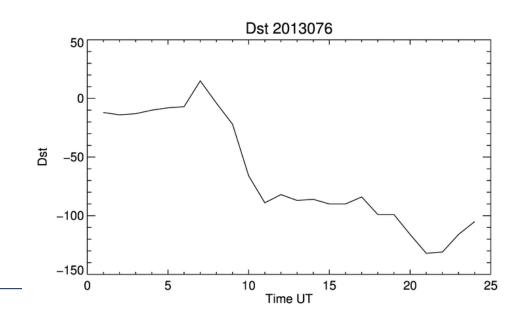
Combine/ compare measurements with models


- > Data assimilation is only one technique
- > Data comparisons / validation
- > Principal component analysis
- New measurements and observations

Overall GLIMPSE Environment

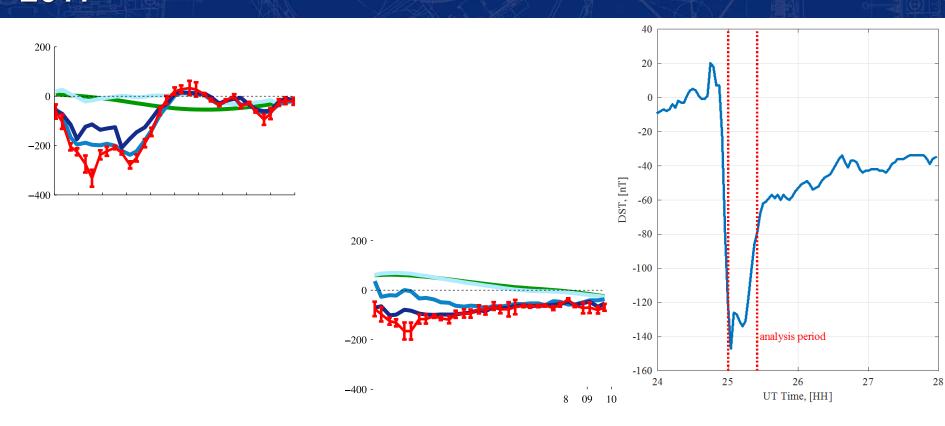
MAIN OBJECTIVE:


Accurate nowcasts/short forecasts (1-3 hours) of large scale and medium-scale ionosphere density


IDA4D: 2013076

VTEC

IDA4D 2013076: Data Coverage


Fusion / IDA4D example

FUSION

- First principle model of electron density
- Empirical models for production, loss, neutral winds, diffusion, ExB drifting
- Currently production, loss, field aligned diffusion and low-latitude ExB drifting
- Future: high latitude ExB, precipitation

EMPIRE Comparisons to FPI Measurements: October 25, 2011

Daniel S. Miladinovich, Seebany Datta-Barua, Gary S. Bust, and Jonathan J. Makela, Assimilation of Thermospheric Measurements for Ionosphere-Thermosphere State Estimation, *submitted to Radio Science*, 2016

Where to go next: ITM an important and complex system

Models / modelers:

- What are the MOST IMPORTANT missing pieces in models that limits ability to accurately predict observations of ITM?
- What measurements are the needed; on what spatial and temporal scales

Instruments / data:

- Design ground and space based observations in a coherent integrated fashion
- Spatial / temporal distributions that are necessary to modelers

Data-model Fusion

> New technique / methods that to obtain a better understanding of the ITM system

Focus:

- Have a focus on the problems we want to solve
- > Big first order physics problems; specific applications

GLIMPSE:

> One small part of the overall ITM system in a consistent and understandable manner

Let us eliminate the Elephants

