GPS measurements onboard Swarm satellites to study occurrence of the equatorial irregularities in the topside ionosphere

> Irina Zakharenkova (1) Elvira Astafyeva (1) Iurii Cherniak (2)

(1) IPGP, France, (2) SRRC, Poland

Can we squeeze every ounce of data?

LEO GPS technique

POD – precise orbit determination

Ionospheric irregularities seen in GPS data

Ionospheric irregularities can be characterized by measuring its impact on amplitude and phase of the received GPS signal.

Pi et al. [1997] introduced into the use two GPS-based indices for ground GPS data:

 \checkmark ROT (rate of TEC change) as a measure of phase fluctuation activity

 \checkmark Rate of TEC Index (ROTI) as a GPS-based index that characterizes the severity of the GPS phase fluctuations and detects the presence of ionospheric irregularities

Image credit: GPS World

$$sTEC = \frac{f_1^2 \cdot f_2^2}{f_1^2 - f_2^2} \cdot \frac{L_1 - L_2}{K}$$

Simple and straightforward technique

$$ROT = \frac{sTEC_k^i - sTEC_{k-1}^i}{(t_k - t_{k-1})}$$

$$ROTI = \sqrt{\left\langle ROT^2 \right\rangle - \left\langle ROT \right\rangle^2}$$

7/11/2004

kiru

Example of ROT variations:

Swarm

Three satellites A, B and C

Tandem (A&C) altitude ~460 km Upper sat B altitude ~510 km

POD 8 channel GPS receiver Time sampling 1 s

Langmuir Probe (LP) 2 Probes Time sampling 1 s

GPS vs LP ROTI vs RODI

ROTI vs RODI

Model simulation of EPB

Yokoyama et al., JGR, 2014

LEO GPS vs. in situ

After Yokoyama et al., JGR, 2014

LEO GPS vs. in situ

After Yokoyama et al., JGR, 2014

LEO GPS vs. in situ

After Yokoyama et al., JGR, 2014

Case study: 19 Feb 2014

Very specific configuration of Swarm:

- 1) Three satellites had orbit alt ~500 km
- 2) Tandem B&C followed A by ~30 min
- 3) LT sector ~07 LT (19 LT)

 TerraSAR-X satellite flew nearby (06 LT) with orbit alt ~510 km

Scheme of multi-sat analysis:

LEO GPS - ROTI

Time

LEO GPS - ROTI

- location
- intensity

More details can be extracted from ROT variation along separate links LEO-GPS

LEO GPS - ROT

Swarm GPS

ROT

Swarm LP In situ Ne

Color lines – 19 Feb 2014

Black lines – quiet day of 18 Feb 2014

TIE GCM simulations

Very fortunate position of Swarm in right place and right time – just 1 h after terminator

Great chance to detect morning EPB over Pacific Ocean!

Poster

Swarm LT coverage

Swarm detection of EPB

SEP 2014

Zakharenkova et al., EPS, 2016

GPS vs LP

LP

✓ 1-D horizontal cut

GPS POD

✓ 2-D sampling

- ✓ single track
- ✓ straight-forward
- ✓ known altitude of EPB

✓ tracking up to 8-12 sat

 ✓ ahead/behind/aside LEO and for much longer time

✓ unknown altitude of EPB

What do these satellites have in common?

Non-ionospheric missions can supply us with ionospheric data along the road!

Let's go beyond stereotypes!

Acknowledgements:

- ESA for Swarm data
- ISDC GFZ Potsdam for TerraSAR-X data
- IGS for GPS products
- CCMC and TIEGCM developers for TIEGCM run results