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Objective of this work:  

Assimilate COSMIC/FormoSat3 electron density profiles into the 

LPIM(3D) via the estimation of the F2-peak parameters. This 

contribution presents comparisons between the obtained results and 

the values given by IRI(CCIR). 



I. COSMIC / FormoSat3 mission and radio occultation profiles 
 About the mission 

• COSMIC / FORMOSAT-3 (Constellation Observing 
System for Meteorology/Formosa Satellite Mission 3) 
joint project between the National Space Organization 
(NSPO) of Taiwan and the UCAR of the USA. 

 
• The mission consists of six micro-satellites that were 

launched on April 2006, into circular orbits with an 
altitude of ~800 km, with a separation of 30° in longitude 
between orbital planes. 
 

• Based on Radio Occultation (RO) inversion techniques, 
the mission team provides electron density profiles in 
the ionosphere, temperature profiles in the stratosphere, 
and temperature and water vapor profiles in the 
troposphere. 
 

• The dataset used in this work was downloaded from the 
Data Analysis and Archival Center (CDAAC) database 
(http://cdaac-www.cosmic.ucar.edu/cdaac/index.html), at 
the University Corporation for Atmospheric Research 
(UCAR). 
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II. Retrieving the F2 peak parameters with LPIM(3D) 
• Each COSMIC/F3 electron density profile was individually fitted to the La Plata 

Ionospheric Model (LPIM) obtaining a pair (NmF2,hmF2) for each profile. 
• LPIM uses 3 a-Chapman layers to represent the electron density as function of the 

height in the E, F1 and F2 layer, and a vary-Chapman function in top-side. 
• LPIM is parameterized as a function of the electron density, height, and scale height 

of the F2 layer. 
• A re-weighted Least Squares algorithm is used for down-weighting unreliable data 

(occasionally, entire ROP) and for retrieving the model parameters and their 
variances. 

• This procedure assigned negligible weights (lower than one tenth of the unity of 
weight) to approximately 20% of the data (including complete ROP). 

Brunini C, Azpilicueta F, Nava B. A technique for routinely updating the ITU-
R database using radio occultation electron density profiles. J. Geod, 
10.1007/s00190-013-0648-x, 2013  
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III. General variables a) number of RO events temporal evolution 

The  monthly number of events is reducing systematically with time. 

A factor of 4 between 2007 and 2016 

Affects similarly both modip hemispheres 
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2 months with data problems 



• 2007-2016.5 – Complete C/F3 data series covering the last minimum and 
maximum. 

• Last maximum was relatively low when compared to the previous one. 
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2007-2012.8 – Previous work* 

2007-2016.5 – Present work 

III. General variables: b) Solar activity evolution 

*Azpilicueta F., D. Altadill, C. Brunini, J.M. Torta, E. Blanch, ‘ A comparison of LPIM-COSMIC F2 peak parameters 
determinations against the IRI(CCIR)’, ASR, doi: 10.1016/j.asr.2014.08.008, 2015. 



III. Gral. Variables: c) spatial distribution of the RO events 
Instead of using the geographic system, the maps are represented in Local 
Time – modip. The Sun is always over the central meridian 
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2012 - March - RO events in LT-modip
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2014 - March - RO events in LT-modip
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2016 - March - RO events in LT-modip
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Example of  
 NmF2 – C/F3-LPIM 

Local Time – modip 
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Example of  
hmF2 – C/F3-LPIM 

Local Time – modip 



Examples of Nm and hm LPIM-COSIMC determinations 
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Examples of  maps of LPIM – IRI 

March 2012 

III. Comparison between IRI and C/F3 peak parameters 
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This image cannot currently be displayed.

Local Time – modip 



III. a Evolution of the Nm monthly mean difference 
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III.b Effect of the Solar activity on Nm differences 
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III.c Evolution of the hm monthly mean difference 
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III.d Effect of the Solar activity on the hm differences 
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IV. Conclusions 

1. The mean difference observed between LPIM-COSMIC and IRI are compatible with the 
differences between IRI and other models and data sourced (for example IRI and 
EBRO). In other words there is no clear evidence of a systematic bias between LPIM-
COSMIC and IRI. 

2. Taken LPIM-COSMIC as the reference, the annual and semi-annual signals could 
indicate in both mean and SD (but mainly in SD), a lack of capability prediction of IRI.  

3. The mean difference (climatological part) does not present any systematic difference 
with a neglecting variation range from -10 to 10 km. This could be interpreted as a 
double verification: from one side the LPIM-COSMIC data are well determined and from 
the other IRI provides a good climatologic representation of the hm. 

4. The SD indicates that the inability of the IRI to model meteorological part of the problem 
could be in the range from -30 to 30 Km. The behavior over the Southern modip 
hemisphere is worse. 

5. The solar activity level enlarge the mean difference of both parameters (correlations of 
0.6). 

6. The statistics most affected by the solar activity are the SD. This is understandable 
because the IRI was not developed with climatologic purposes. 
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Use of Ionospheric GNSS TEC data – June 20-24 2016 17 
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Period used for determining the CCIR coefficients 
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III. General variables: c) SSN historical data series 



March 2007 

March 2012 

II.a Examples of Nm and hm LPIM-COSIMC in LT-modip 
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