

EGNOS performance during ionospheric disturbances at high latitudes

Results from the Arctic Testbed project BSS 2016, Trieste

Y. L. Andalsvik, A. M. Solberg, R. I. Hanssen, M. Porretta, P. E. Kvam, K. S. Jacobsen

Arctic Testbed

- ESA project lead by Kongsberg Seatex
 - Part of the European GNSS Evolutions Programme (EGEP) of the European Space Agency (ESA)
 - Aiming at possible improvements to EGNOS service at high latitudes

Arctic Testbed

- Experimentation is performed using a SPEED platform (Support Platform for EGNOS Evolutions & Demonstrations)
 - Based on EGNOS algorithms, extended for next generation of EGNOS
 - Platform adapted for ATB
 - Located at Norwegian Mapping Authority (NMA) premises in Hønefoss, Norway
- Replay and Play mode
 - Play
 - (Fast-)Replay

Experimentation

Focused on high latitude issues:

- Ionospheric effects at high latitudes
- Additional stations at high latitudes
- Alternative dissemination means
- Maritime services demonstration
- Interoperability with other SBAS
- Benefits for Dual Frequency Multi Constellation Users
- Presentation of some preliminary results involving ionospheric issues at high latitudes

Experimentation period

- 24th of February 2nd of March 2014
- 1(-2) days for convergence
- 2 days with low ionospheric activity at high latitudes
- 1 day where EGNOS was severely affected by ionospheric activity
- 3 days where EGNOS was (more moderately) affected by ionospheric activity

2014-02-25 00:00 to 2014-02-25 23:59 UTC

2014-02-26 00:00 to 2014-02-26 23:59 UTC

2014-02-27 00:00 to 2014-02-27 23:59 UTC Rate of TEC Index at ground

2014-03-01 00:00 to 2014-03-01 23:59 UTC Rate of TEC Index at ground

2014-03-02 00:00 to 2014-03-02 23:59 UTC Rate of TEC Index at ground

ATB station network

- EGNOS RIMS stations
- IGS/EUREF stations
- SATREF stations from Norway
- DTU stations from Greenland

37 EGNOS RIMS – APV-1 availability over 24 h

2 extra reference stations

Between 60N and 65N

Improvement many places...

.. Also with high ionospheric activity for the 99% limit

5 extra reference stations

2 between 60N and 65N1 between 65N and 70N1 between 70N and 75N1 between 75N and 80N

Coverage far north...

Coverage far north...

Worse in many regions than with fewer stations.

IGP mask

SBAS provides ionospheric corrections and an ionospheric error bound (GIVE) for a grid of ionospheric grid points (IGPs)

- Ionospheric delay measured for IPP with dual frequency observations
- Interpolation between IPPs provide IGP values transmitted to users
- Users interpolate between IGPs to obtain corrections for single frequency observations

The ionospheric error bound is input to the user's calculation of position error bound. If the position error bound is outside a pre-set limit, the service is said to be not available. Therefore, in particular during an ionospheric storm, the GIVE might be the major factor limiting availability

IGP availability

37 EGNOS RIMS

Single IGP, 55N 10E

37 EGNOS RIMS

37 EGNOS RIMS + 5 extra stations

150

Run with 5 additional stations

Raw VTEC data for ionospheric pierce points

Black circles indicate IPPs seen by the additional stations

IPP data availability South vs North

Receiver TLSA (31)

Kartverket

NOTE: Gaps for all satellites are due to the data collection tool and are not actual gaps

IPP data availability RIMS vs non-RIMS Approximately same place (Svalbard)

Summary

Addition of reference stations when the ionospheric effects on the system are low or medium:

• Better APV-1 availability the more reference stations

Addition of reference stations when the ionosphere is strongly affecting the system:

- More IPPs seems to lead to IGPs not monitored in the central coverage area
- More IPPs observed with higher VTEC values
- Decrease of the area inside the 99% limit of APV-1 availability
- However, an increase in availability at the northern limits of the service area
- EGNOS RIMS have significantly more gaps in the satellite availability (for VTEC/GIVE) at high latitudes than the additional stations
- EGNOS prioritizes integrity -> availability and accuracy might be degraded

Backup slides..

ESA Stanford diagram

Monitor station at 62 degrees N

Satellite monitoring status

Sigma Phi time-series examples

2014-02-27 00:00 to 2014-03-01 00:00 UTC hon2, SigmaPhi, GLO L2C (Scaled to GPS L1)

2014-02-27 00:00 to 2014-03-01 00:00 UTC hop2, SigmaPhi, GPS L1C

2014-02-27 00:00 to 2014-03-01 00:00 UTC hop2, SigmaPhi, GLO L2C (Scaled to GPS L1)

EGNOS RIMS + extra stations

- 37 EGNOS RIMS
- 2 additional stations at ~60 degrees north

37 EGNOS RIMS APV-1 availability over 24h

30└ -60

-40

-20

0

Longitude (deg)

20

40

37 RIMS + 2 extra stations

Monitor stations

7 monitor stations at high latitudes

AVd	mapin	ly vv	I U I I Z	ex		stati	0115	
DOV	Data		hod2	alte	Vare	ianc	hofp	Г

Availability with 2 oxtra stations

DOY	Date	ales	bod3	altc	vars	jans	hofn	kely
56	25.02.2014	99.55	99.55	99.55	94.23	96.63	99.55	0.00
57	26.02.2014	100.00	100.00	99.80	93.45	96.98	100.00	0.00
58	27.02.2014	96.06	84.49	77.51	68.83	70.22	75.77	0.00
59	28.02.2014	99.80	94.93	93.24	87.75	93.10	93.08	0.00
60	01.03.2014	100.00	99.79	93.64	80.89	88.28	96.95	0.00
61	02.03.2014	100.00	98.84	95.37	92.10	95.44	97.98	0.00

Diff with and without 2 extra stations

DOY	Date	ales	bod3	altc	vars	jans	hofn	kely
56	25.02.2014	-0.01	-0.01	-0.01	0.46	0.53	-0.01	0.00
57	26.02.2014	0.00	0.00	0.19	0.41	0.52	0.00	0.00
58	27.02.2014	10.76	5.79	3.96	2.24	1.46	0.20	0.00
59	28.02.2014	5.32	2.32	2.39	2.49	4.44	3.34	0.00
60	01.03.2014	0.38	2.13	3.36	1.18	2.95	2.08	0.00
61	02.03.2014	1.01	1.04	0.15	0.11	0.44	1.89	0.00

Accuracy HPE95%

DOY	Date	ales	bod3	altc	vars	jans	hofn	kely
56	25.02.2014	0.7	1.2	1.6	2.4	2.1	0.9	*
57	26.02.2014	1.1	1.1	1.5	2.0	2.5	1.3	*
58	27.02.2014	1.6	2.4	2.9	2.8	2.5	3.3	*
59	28.02.2014	1.1	1.4	1.3	1.9	1.9	1.7	*
60	01.03.2014	0.9	1.6	1.8	2.7	2.3	1.7	*
61	02.03.2014	1.0	1.2	2.2	2.4	3.2	1.6	*

Accuracy VPE95%

DOY	Date	ales	bod3	altc	vars	jans	hofn	kely
56	25.02.2014	1.5	2.1	2.9	4.0	3.2	2.2	*
57	26.02.2014	1.8	2.3	3.7	4.5	4.2	2.0	*
58	27.02.2014	2.3	3.8	4.1	4.3	4.7	4.3	*
59	28.02.2014	2.0	2.7	2.9	4.1	2.9	2.7	*
60	01.03.2014	1.7	2.9	2.8	4.0	3.8	2.9	*
61	02.03.2014	1.7	2.2	2.8	3.4	4.4	2.2	*

