

Alternative Formalism for Computing Likelihood of Scintillation Effect from Inferred Vertical Drift in the Absence of Direct Measurements

B. O. Adebesin¹, A. B. Rabiu², J. O. Adeniyi³, C. Amory- Mazauder⁴

¹Department of Physical Sciences, Landmark University, Nigeria ²Centre for Atmospheric Research, NASRDA, Anyigba, Nigeria ³Department of Physics, University of Ilorin, Nigeria ⁴Senior Scientist UPMC, Associate Staff at ICTP

INTERNATIONAL BEACON SATELLITE SYMPOSSIUM 2016 @ ICTP, TRIESTE, ITALY DATE: 27 JUNE – 1 JULY., 2016

MOTIVATION

- Being able to predict the likelihood of scintillation effect in a station where direct measurement is not available (using observations from ionosonde)
- ✓ The first of such investigation in the African equatorial latitude

2012

Distribution of Ground-based measuring equipment in the African sector

(Source: Yizengaw et al., 2012) ³

DATA AND METHODOLOGY

- ✓ Data spans 1966 1998
- ✓ Covering 3 Sunspot cycles
- ✓ Large database only available at Ouagadougou (in the African sector)
- ✓ Observation spans 16-06 LT
- ✓ During PRE max. and Reversal max.

Table showing classification of solar activity

Solar cycle phase	Minimum (Rz < 20)	Maximum (Rz > 100)	Descending (100 ≥ Rz ≥ 20)	Ascending (20 ≤ Rz ≤ 100)	
20	**	1968 – 1970	1971 – 1976	1966 – 1967	
21	1976	1979 – 1981	1983 – 1986	1976 – 1978	
22	1986	1989 – 1991	1992 – 1996	1986 – 1988	
**SC 20 minimum phase year (1961) is not covered by data					

******SC 20 minimum phase year (1964) is not covered by data

Classification similar to Quattara et al., [2009] Ann. Geophys, 27.

Basic features of Equatorial vertical plasma drift

Typical direct measured vertical drift using ISR observations for Jicamarca for equinox in 2010.

DATA DEVELOPMENT

- (i) Monthly mean value is the arithmetic hourly daily mean value for a month.
 (ii) Annual mean value is the arithmetic hourly monthly mean value for a year.
 (iii) Sunspot cycle seasonal mean value is the arithmetic hourly monthly mean values for months constituting a particular season covering the entire years (11 years) that made up the sunspot cycle.
- (iv)The 11-year cycle monthly PRE/minimum reversal peak mean values is the arithmetic hourly monthly mean value for similar months present in all 11-years that constitute a SC during the PRE/minimum reversal periods.
- (v) The sunspot cycle phase mean value is the arithmetic hourly mean values of the years that constitute a particular cycle phase per sunspot cycle event.

RESULTS

Nighttime hourly annual profile of h'F over Ouagadougou ionosphere for sunspot cycles 20-22

RESULTS

Average monthly variation of V_d for SCs 20-22 during maximum PRE (upper panel) and minimum reversal peak (lower panel) periods.

VARIATION OF V_d WITH SUNSPOT NUMBER (Rz)

Annual variation of R_z (solid line) with V_d for all SC cycles 20-22 during (a) peak PRE (dotted line), and (b) minimum peak reversal (dotted line) periods. The linear equations and r are shown on the RHS pane of each figure.

VARIATION OF V_d WITH PHASE OF SUNSPOT CYCLE

Hourly mean values of plasma drift during (a) maximum, (b) ascending, (c) descending, and (d) minimum phase periods of the SC 20-22. ¹¹

VALIDATING OUAGADOUGOU IONOSONDE DATA

(3)

Ouag. (Lat. 12.4°N, long. 358.6°E) Ilorin (Lat. 8.50°N, Long. 4.68 °E)

Annual_{Ilorin} PRE peak = 4.2 m/s (1) From the PRE peak/Rz equation for Ouagadougou, **peak PRE = 0.158Rz + 1.495** (2) In 2010, annual Rz is 16.5,

hence,

peak PRE = 0.158 (16.5) + 1.495 = 4.1 m/s

Month PRE peak (m/s) March 10.2 April 4.2 -1.1 May June 3.1 -1.0 July 2.6 August 5.1 September October 3.5 November 7.8 December 8.0

(Source: Adebesin et al., 2013 ASR 52(12),

Monthly mean PRE peak magnitude of Vd = d(hmF2)/dt obtained over Ilorin ionosphere for year 2010

$$(1) = (3)$$

MEASUREMENT OF SCINTILLATION INHIBITION FROM *h'F* AND PRE

The post-sunset increase/ decrease in *h'F* can be an indirect measure of the seeding/inhibiting characteristics to the existence of scintillation effect in the ionospheric region (Mazaudier et al., 1984, JGR, 89(A1))

 Daily nighttime hourly values are used

Condition for determining the inhibition characteristics from the height profile (h'F)

The inhibition rate maximizes at sunspot minima, increases during sunspot descending phase, decreases during sunspot ascending phase, and minimizes during sunspot maxima for all SC conditions. % monthly rate of inhibition = days with decrease in hF around 19 LT through the midnight hours in a month Total number of days with hF data availability for the same month

solstice

RATE OF INHIBITION (%)

32-year average seasonal rate of inhibition of the likelihood of scintillation effect. The white/black bars are the equinox/ solstice seasons.

SC 22

1.45

5.05

3.40

3.75

1	5
1	J

SUMMARY

Activity	plasma drift (m/s)			
	Peak PRE	Maximum pre-	Minimum	
		sunrise	downward	
			excursion	
Sunspot cycle				
SC 20	18.6	5.2	-7.5	
SC 21	25.9	5.0	-11.4	
SC 22	26.1	0.5	-8.3	
Solar activity phase				
Maximum/HSA	25.0	5.6	-9.7	
Ascending/MSA	13.3	3.0	-4.3	
Descending/MSA	9.0	2.1	-4.3	
Minimum/LSA	4.5	0.6	-3.9	
Seasonal activity				
March equinox	18.1	4.0	-7.8	
June solstice	12.0	1.4	-10.9	
September equinox	15.7	2.9	-6.6	
December solstice	12.8	3.8	-8.5	

Peak magnitudes of plasma drift for different activities and conditions

ACKNOWLEDGEMENT

- ✓ The Ionospheric Laboratory of the Centre National des Télécommunications to Lannion, France.
- ✓ National Geophysical Data Centre (NGDC), Boulder, Colorado.
- ✓ University of Ilorin Equatorial Ionospheric Observatory