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Abstract

Children who use advanced arithmetic strategies, such as count-on and decomposition, are

more accurate when solving arithmetic problems and are more likely to later have higher lev-

els of math achievement. The present study tested the hypothesis that instruction using lin-

ear-spatial representations would activate children’s knowledge necessary for use of mental

addition strategies and, thus, lead to greater accuracy on addition problems, than instruction

using irregular representations of magnitude. As predicted, low-income kindergartners

(n = 29) randomly assigned to practice sums up to 10 using materials that instantiated the

linear-spatial features of a mental number line (i.e., discrete squares arranged in rows) dem-

onstrated substantially more improvement in solving unpracticed addition problems than

children who practiced with irregular materials (i.e., pictures of stars arranged in random

arrays). This was particularly true for children with better initial numerical knowledge, which

provided support for the idea that existing knowledge was activated. The use of count-on

more than doubled from pretest to posttest among children in the linear-spatial condition

and this mediated the difference in improvement between conditions. The importance of

aligning instructional materials to relevant mental representations–consistent with the Cog-

nitive Alignment Framework for instructional design—is discussed.

Introduction

Only one third of American eighth-graders are proficient in mathematics [1]. This poor per-

formance has its roots in early chilhood; kindergartners’ mathematical knowledge, and arith-

metic knowledge specifically, predicts subsequent mathematics achievement test scores

through high school [2–6]. Thus, identifying effective approaches for improving young chil-

dren’s arithmetic knowledge could have lasting effects on mathematics success. Further, it

could be particularly true for children from lower-income families who solve symbolic addi-

tion problems substantially less accurately and who use ineffective addition strategies far more

frequently than more affluent children [7–10].
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The goal of the present study was to develop and test an instructional intervention for arith-

metic, using the cognitive alignment approach. The cognitive alignment approach provides a

theoretical framework for considering which instructional materials are most likely to produce

effective learning [11]. Its basic principle is the more precisely physical materials and learning

activities align with the desired mental representation, the more likely students are to acquire

that representation. Support for the premise of cognitive alignment comes from research

on analogical reasoning [12,13]. For example, physical characteristics and instructions that

prompt children to notice the alignment of key relations in one problem with key relations in

another increase children’s identification of analogous solution procedures on yet other, paral-

lel problems [12,14]. Thus, the logic is that greater alignment in the features of instruction and

mental representations facilitates the mapping between them and promotes learning.

In many learning situations, however, the desired outcome is not a mental representation

but rather a procedure or strategy. In the case of arithmetic, a key learning goal is the ability

to execute more advanced problem-solving strategies in order to improve accuracy and effi-

ciency. An understanding of numerical magnitude is assumed to be an underlying mental

representation that contributes to arithmetic accuracy [15,16], but in arithmetic instruction is

not a goal in and of itself. In accordance with the cognitive alignment framework, we hypothe-

sized that arithmetic instruction that instantiates the key properties of mental representations

of numerical magnitude (e.g., linearly increasing, spatially organized from left to right)–reflect-

ing alignment to the desired mental representation–should be more likely to facilitate the use

of better arithmetic strategies, and thus improve accuracy, than instruction that does not.

Testing this hypothesis provided an opportunity to explore whether the cognitive alignment

approach extends beyond situations in which there is a direct mapping between the physical

materials and the desired mental representation (e.g., linear number line game to linear num-

ber line representations) [11,17] to those where there is an indirect mapping via an intermedi-

ary representation underlying a desired procedural outcome (e.g., linear-spatial materials to

linear magnitude representations to arithmetic strategies).

Addition strategies

A good deal of mathematics instruction in kindergarten and first grade is dedicated to practice

with addition and to helping children acquire addition strategies [18]. There are four main

types of addition strategies: count-all, count-on, decomposition, and retrieval [19–21]. The

count-all strategy involves counting out each addend and then counting the total (e.g., to solve

4+3 a child would first count to 4, then count to 3, and then count from 1 to 7). The count-on
strategy involves counting up from one addend the value of the second addend (e.g., to solve 4

+3 a child would count 5, 6, 7). Decomposition involves transforming the original problem into

two or more simpler problems, using either a previously memorized number fact or the base-

10 properties of the number system (e.g., to solve 4+7 a child might first add 4+6 to get 10 and

then add 1 more). The last strategy, retrieval, involves recalling the solution from memory.

While children can use multiple strategies at any given time, there is a general progression

during the first years of elementary school from using basic strategies toward using more

advanced ones [22–24]. Initially, children solve most addition problems using the count-all

strategy. They then tend to move toward using count-on as the predominant strategy. Later,

retrieval and decomposition become most prevalent [24]. Count-on, decomposition, and

retrieval constitute more-advanced strategies because they all benefit from the mental repre-

sentation of at least one of the addends. For example, to solve 8 + 4 using count-on, 8 can be

represented mentally and then 4 counted-on to arrive at 12. Although some children rely on

concrete representation of one addend (e.g., holding up 8 fingers before counting on 4),
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children who rely on mental representations of magnitude should exhibit greater flexibility

when using count-on and be better able to transition to other mental strategies. Likewise,

decomposition (e.g., solving 8+ 4 by representing 4 as 2+2, then adding 8 + 2 = 10 and 10

+ 2 = 12), involves mentally representing the magnitude of one addend as both a whole and

as parts. Once children have access to multiple strategies, they typically select strategies adap-

tively, based on problem characteristics. When solving a problem that has one small addend,

such as 8+3, a child might use count-on, but when solving a problem with two larger addends,

such as 8+9, a child might use decomposition [25,26].

Children who persist in using count-all as their predominate strategy during early elemen-

tary school are more likely than those who shift to more advanced strategies to have lower

mathematics achievement later in elementary school [16,27–30]. This trend is at least in part

because count-all is increasingly inefficient and error prone as addition problems become

more complex. As the size of addends increase, it becomes impossible to represent each

addend and the sum with fingers and cumbersome to keep track while counting a large num-

ber of items. Thus, the use of more advanced strategies becomes critical for accurately solving

problems with sums greater than ten [10].

Much of early instruction involves using objects and drawings to represent the quantities of

addends to arrive at the sum [18]. Children use counting strategies more frequently when a

task includes discrete quantities than when one involves purely continuous quantity [31].

Encouraging children to count discrete objects to solve addition problems may initially help

them acquire a count-all strategy. If materials are consistently presented in this way, however,

it may stymie their progression toward more advanced strategies and mentally representing

addends. On the other hand, an approach that evokes a mental representation of the addends’

magnitudes may promote greater use of advanced strategies.

Numerical magnitude knowledge

Children develop mental representations of single-digit number magnitudes gradually during

early childhood. They first associate numerals with an absolute magnitude (3 equals � � �)

[32,33]. Later, they refine these representations to include information about relative magni-

tude (5 is more than 3) such that they develop a mental number line (e.g., [29,30]). On this

mental number line, numerical magnitude is represented spatially from smaller numbers on

the left to larger ones on the right, with numbers distributed proportionally along the scale

[34–37].

This knowledge is essential for arithmetic. It is both correlationally and causally related to

arithmetic accuracy. By preschool, the accuracy of children’s judgments of the magnitude of

Arabic numerals on a number line estimation task is related to their accuracy on addition

problems [16,38]. Similarly, the speed and accuracy with which 6- and 8-year-olds determine

which of two Arabic numerals is greater is related to their arithmetic fluency and predictive of

later math achievement [39–41]. Interventions that improve the linearity of preschoolers’ and

first graders’ estimates of numerical magnitude also improve their memory for the sums of

arithmetic problems [42,43].

Numerical magnitude knowledge may contribute to arithmetic accuracy in at least three

ways. First, a linear mental number line seems to constrain responses to addition problems. To

judge whether a sum is reasonable, one must understand the relative magnitude of the addends

and of the sum in relation to them (e.g., 8 + 4 cannot make 7 and cannot make 30). Indeed,

children with more accurate and linear mental representations of relative numerical magni-

tude generate responses to arithmetic problems closer to the actual sum than those with poorer

numerical magnitude knowledge [10,38,42–44].

Linear materials and arithmetic learning
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Second, a mental number line involves spatial-numeric associations that seem to aid arith-

metic operations [45,46]. Adults exhibit shifts in spatial attention to the right when performing

addition, suggesting they internalize addition as movement toward larger numbers on a men-

tal number line [47–49]. This effect also suggests that the spatial cues of magnitude play a role

in generating and constraining responses to addition problems.

Finally, the ability to mentally represent the magnitude of numerals might support the use

of more advanced strategies, which are associated with greater accuracy. There is already evi-

dence that children who are more accurate at comparing Arabic numerals are more likely to

use retrieval [15,41]. An idea explored in this study is that numerical magnitude knowledge

might also aid the use of more advanced calculation strategies, such as count-on and decompo-

sition. No previous work has examined whether interventions involving linear numerical mag-

nitude understanding affect arithmetic calculation strategies in addition to memory for sums.

These findings raise the question: How can addition instruction be structured to capitalize

on children’s mental representation of numerical magnitude? While various visual representa-

tions of quantity are used for math instruction in early childhood, many commonly used

materials (e.g., pictures and objects arranged in arrays, dice with discrete canonical representa-

tions of dots) do not instantiate the linear and spatial features of a mental number line. These

materials may not be as effective as possible because they do not activate children’s mental

number line during arithmetic practice or help children discern the relevance of their mental

representations of numerical magnitude for constraining their responses and executing better

strategies.

Present study

The purpose of the present study was to compare the effectiveness of instructional materials

for addition practice. Our hypotheses were informed by the Cognitive Alignment Framework

[11]. Because numerical magnitude knowledge is a mental representation essential to arithme-

tic accuracy, we hypothesized that materials aligned to its key linear-spatial features would pro-

mote greater learning, than those lacking this alignment. Specifically, we hypothesized that

addition practice with materials that instantiate the linear and spatial features of a mental

number line would activate children’s mental number line to promote greater use of advanced

strategies and constrain children’s responses, thus leading to greater accuracy, than practice

with materials that did not instantiate these mental number line features.

To test this hypothesis, low-income kindergartners were randomly assigned to practice

addition problems with sums up to ten using one of two representations of the numerical mag-

nitude of the addends 1–9: irregular or linear-spatial representations (see Fig 1). The irregular

representation involved groups of discrete stars arranged in random arrays. The linear-spatial

representation involved discrete squares organized linearly on horizontal sticks of varying

length, such that the correlation between length and number of discrete squares provided a

salient spatial-numeric association.

Fig 1. Examples of addend representations used in each condition: (a) irregular and (b) linear-spatial.

https://doi.org/10.1371/journal.pone.0208832.g001

Linear materials and arithmetic learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0208832 December 31, 2018 4 / 19

https://doi.org/10.1371/journal.pone.0208832.g001
https://doi.org/10.1371/journal.pone.0208832


Our approach was novel relative to other studies that have examined the relation between

linear numerical magnitude representations and arithmetic. Unlike Ramani and Siegler [42]

for example, the objective of the training was not to improve children’s numerical magnitude

knowledge and then examine whether there were spillover effects to their memory of addi-

tion sums. In fact, the training only included representations of the magnitudes of numbers

up to ten, for which many kindergartners already have a linear representation [50]. Rather,

the objective was to determine whether activating children’s existing mental representations

using materials that instantiate its linear-spatial properties would help children discern the

relevance of their numerical magnitude knowledge for addition and promote the use of

more advanced mental addition strategies to solve unknown problems. Thus, we hypothe-

sized that children who possessed greater initial numerical magnitude knowledge at the

onset of instruction would be more likely to benefit from linear-spatial materials than those

with lesser numerical magnitude knowledge as the materials would align with and activate

their existing knowledge.

For this study, we chose specifically to focus on low-income children, given they are far

more likely to use less sophisticated strategies [10]. Before and following practice, children

were tested on novel arithmetic problems, involving sums larger than ten. We expected that

children who practiced addition with the linear-spatial materials would demonstrate greater

improvement in accuracy than children who practiced with irregular materials. We also

expected this improvement would be mediated by a greater use of advanced strategies. Because

the majority of assessment problems were different than those practiced and involved larger

sums, improvement in accuracy could not be a result of improved memory of the sums.

In both practice conditions children were instructed how to use and assisted in using the

count-on strategy to determine the sum. Despite practice with the strategy being equivalent

for both groups, we expected that children who practiced with the linear-spatial materials

would choose to use the strategy more frequently to solve unfamiliar addition problems fol-

lowing training than those who used the irregular ones. The logic was that because the linear-

spatial materials aligned to the mental number line they would better enable children to acti-

vate their mental representations and, thus, implement and acquire the count-on strategy. In

addition, we expected that increased use of advanced strategies would be most apparent

among those children in the linear-spatial condition who possessed the greatest numerical

magnitude knowledge before training. It was for those children that there would be the great-

est alignment between the linear-spatial materials and their existing mental representations of

numerical magnitude.

Method

Participants

This study included 29 kindergartners (mean age = 6 years, 3 months) from four classrooms

in a low-income urban charter school. The percentage of children eligible for free or reduced

lunch at the school was 84%. The school served primarily Hispanic and African American

students. The irregular condition included 15 children and the linear-spatial condition

included 14 children. A power analysis indicated that our sample size had 86% power to detect

a medium effect size with an alpha of 0.05 for repeated measures ANOVAs. Genders were

equally distributed across conditions (irregular: 7 males, 8 females; linear-spatial: 7 males, 7

females) and preliminary analyses showed no correlation between gender and variables of

interest. Children were first matched by gender and then randomly assigned to conditions

within classroom, such that children from each classroom were represented in each condition

group.

Linear materials and arithmetic learning
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Testing occurred in the spring of the school year. Testing of children in the two conditions

was interleaved, so that children in them were matched for the time of year of their participa-

tion. By the time of testing, children had been exposed to arithmetic instruction. The common

core standards, on which the curriculum was based, expect children to leave kindergarten able

to solve addition and subtraction problems within 10 and to be able to find the number to

make 10 when given any number between 1 and 9 [18].

Researchers received approval to conduct this research from their university’s Institutional

Review Board. Additionally, a letter of approval was written by the principal of the participat-

ing school, permitting the researchers to recruit students. Both written parental consent and

verbal child assent were obtained for each participant.

Design

Children met individually with an experimenter for a total of 6 sessions over approximately 3

weeks. In sessions 1 and 6, children completed the pre- and posttests; in sessions 2–5, they

played the Building Tens addition game. Children completed the posttest (session 6) on aver-

age one week after the final training (range was between 3 and 17 days). The study was carried

out by four experimenters and each experimenter worked with children from both conditions.

Pretest/Posttest sessions (sessions 1 and 6). In these sessions, children completed two

tasks in a fixed order: Numeracy Screener then an Addition Accuracy and Strategy Assessment.

Numeracy Screener. The Numeracy Screener measures children’s accuracy comparing

the numerical magnitudes of two Arabic numerals, and is an accepted measure of kindergart-

ners’ numerical magnitude knowledge [51–54]. This task was previously shown to be highly

reliable, α = .83 [54]. Children were presented with pairs of numerals between 1 and 9 and

asked to cross out the larger of each pair. The order in which the magnitudes appeared was

counterbalanced, such that the larger magnitude was on each side on half of the items. Chil-

dren had two minutes to compare up to 56 pairs. A point was given for each pair on which the

larger magnitude was correctly identified.

Addition Accuracy and Strategy Assessment. Children were presented 12 single-digit

addition problems. The problems and orders in which they were presented are listed in S1

Table. The majority of the problems had not been practiced during training. Children saw the

problems in a pre-determined order for pretest and in a different order for posttest. Children

were presented one problem at a time, with the experimenter showing the problem (a + b) and

saying it aloud (“How much is a + b?”), and were told to verbally provide the sum. Children

were not provided any resources (e.g., paper and pencil, counters), but were allowed as much

time as necessary to solve the problems. Children’s verbal responses were coded as correct or

incorrect by the experimenter. Children’s absolute error on each problem was calculated as the

absolute difference between the verbal sum they provided and the correct sum. Internal consis-

tency of pretest scores was calculated using Cronbach’s alpha, and both absolute error (α =

.90) and accuracy (α = .82) were determined to be reliable measures.

To determine the strategy used by participants, the experimenter recorded any overt signs

of strategy use (e.g., if the child counted out-loud or used fingers) during problem solving.

When there was not sufficient information to code the child’s strategy, the experimenter asked

how he or she “figured it out.” This kind of combination of behavioral observations and retro-

spective self-reports has been found to lead to valid strategy classifications [55,56]. Sessions

were audio-recorded, to allow researchers to confirm strategy approaches.

For each trial, children’s approach to solving the problems was classified as count-all,

advanced strategy, or other. Children were coded as using a “count-all” strategy when they

counted out each addend beginning with one. Children were coded as using an “advanced

Linear materials and arithmetic learning
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strategy” when they used one of the following strategies, which require mentally representing

at least one addend: count-on, decomposition, or retrieval. Count-on involves counting up

from one of the addends. Decomposition involves transforming the original problem into two

or more simpler problems. Retrieval involves recalling the sum from memory and was only

coded when children answered the problem within approximately three seconds. An “other”

code was used when the child’s strategy did not align with one of the main strategy codes,

when the child reported guessing, or when the child could not articulate or demonstrate a

strategy. S2 Table provides further information about strategy coding. The data were coded

independently by two raters, and their agreement rate was 91%. Raters consulted on all

instances in which children’s reported strategy conflicted with their observed behavior and

together agreed on the final code.

Game-playing sessions (Sessions 2–5). In each of these sessions, children played the

Building Tens game once with an experimenter during which they practiced combinations

summing to ten. Children were randomly assigned to one of two experimental conditions that

differed only in the representational format of the numerical magnitudes of the addends. In

the irregular condition, the numerical magnitude of each addend was represented by discrete

sets of stars organized in random arrays on one-inch square cards. In the linear-spatial condi-
tion, the numerical magnitude of each addend was represented as discrete units organized line-

arly using wooden sticks of varying lengths segmented into 2-cm. units. Fig 1 presents the

addend representations used in each condition. The size of the discrete units used in the

addend representations varied by condition, with the stars being smaller than the squares,

because of their arrangement. However, the units in both conditions were of sufficient size to

allow for enumeration.

The game boards for each condition on which children solved the problems were structured

in the same way. Both game boards were 15” x 15” and included a visual representation of ten

units at the top–ten stars in a random array or ten squares organized linearly. Below the repre-

sentation of ten, both boards included a demarcated area for placing the addends for each of

the nine practiced problems.

The game playing procedure was identical in both conditions. Each player had a set of

pieces (blue for the experimenter and red for the child) representing the numerical values 1–9

both non-symbolically and with an Arabic numeral. During the game, the experimenter

selected a numerical value and asked the child to find the numerical value that, when com-

bined with the first, would equal ten. Once the child identified the correct addend and placed

it on the board, the child was asked to find the symbolic equation that represented how they

made ten (e.g., 5 + 5 = 10). If a child provided an incorrect response, the experimenter told the

child whether the resulting sum was more or less than 10 (e.g., “oops! Look–this is more than

10!”) and asked the child to select a different numerical value. If the child was incorrect a sec-

ond time, the experimenter told the child which addend to select. Finally, on each turn, the

experimenter pointed to the pieces and the equation card and said, “Look! [first number on
equation card] plus [second number on equation card] equals 10” (e.g., “Look! Five plus five

equals 10”).

The sessions were designed to become increasingly challenging for the child, with the child

taking on greater responsibility for using the count-on strategy between sessions 1 and 2 and

practicing a greater variety of combinations from sessions 2 to 3 to 4 (see S3 Table for a list

of pieces given to the experimenter and child on each session). The first time the game was

played, all nine combinations of 10 that involved two addends were practiced (the five combi-

nations and the associative pairs). At the end of each turn, the experimenter used the count-on

strategy then verified the addition fact (e.g., “6. . .7, 8, 9, 10. 6 plus 4 equals 10”). The second

time the game was played was identical to the first except that the child was expected to actively

Linear materials and arithmetic learning
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count-on. The experimenter said the value of the first addend. Then, the experimenter pointed

to each unit in the second addend while the child counted-on. This procedure ensured that

children in both conditions accurately enumerated the discrete units and did not miscount.

The third time the game was played, children practiced the five combinations of ten, without

commuted pairs (e.g., 9 + 1, but not 1 + 9 was practiced) during the first five turns. The last

four turns they practiced combinations with three addends, in which the first addend was

always 5. Children had the addends 1–4 and had to figure out a combination of five so that

the overall sum would be ten. In this session, children were expected to count-on as they had

done in the previous session, while the experimenter pointed to the units. The fourth time the

game was played, children practiced combinations with three addends for seven out of the

nine total turns. The first five turns involved re-practicing combinations of ten in which one of

the addends was five. The children were given pieces representing 1 through 5, thus requiring

children to select two addends for four out of the five trials. The last four turns involved prac-

ticing combinations in which the first addend was 4, three of which required children to use

two addends to arrive at the value needed (i.e., 6) to arrive at a total sum of 10. To promote

fluency and draw children’s attention to the whole magnitude, neither the child or the experi-

menter counted-on during the fourth session. In both conditions, each of the training sessions

lasted about ten minutes and the experimenter provided the same assistance.

Results

Preliminary analyses indicated random-assignment was successful: there were no differences

between conditions in children’s age or their pretest performance on the numerical measures

(numeracy screener, arithmetic absolute error, accuracy, and strategy categories). Table 1 pres-

ents children’s pretest mean score, by condition, and the p-values from independent sample t-
tests comparing between conditions.

Numerical magnitude knowledge

To test for condition effects on children’s numerical magnitude knowledge, we conducted a 2

(Condition: Irregular vs. Linear-Spatial) x 2 (Time: Pretest vs. Posttest) repeated measure

ANVOA on the number of pairs for which children correctly identified the greater numeral.

As expected, the results indicated no main effects or interactions. Children in neither condition

demonstrated significant improvement between pretest and posttest (Irregular: M = 38.07,

SD = 11.24; Linear-spatial: M = 41.93, SD = 9.47).

Table 1. Pretest mean scores for children in the irregular and linear-spatial conditions. Standard deviations are

presented in parentheses. P-values were calculated from independent sample t-tests comparing children between the

two training conditions.

Irregular Materials Linear-Spatial Materials p-value

Age in months 75.59 (4.31) 73.42 (3.85) .16

Numeracy Screener 34 (15.22) 40.50 (10.73) .20

Arithmetic Percent Correct 24% (25) 33% (23) .37

Arithmetic Absolute Error 3.04 (1.43) 2.53 (2.21) .46

Use of Other Strategies 51% (40) 39% (39) .42

Use of Count-All Strategy 35% (34) 42% (38) .56

Use of Advanced Strategiesa 14% (27) 19% (33) .67

aAdvanced strategies include count-on, decomposition, and retrieval

https://doi.org/10.1371/journal.pone.0208832.t001
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Addition accuracy and strategies

We hypothesized the linear-spatial condition would lead to greater improvements in addition

accuracy and strategies because it would align with children existing linear mental number

lines. While the differences in numerical magnitude knowledge between conditions were not

significant at pretest, to be as conservative as possible, we used children’s numeracy screener

scores as a covariate in the following analyses testing condition effects on addition accuracy

and strategies.

Accuracy. We chose to use absolute error as a measure of accuracy–in addition to using

percentage or problems answered correctly–because absolute error is a more sensitive measure

of improvement in addition than percentage correct. Children’s absolute error was calculated

for each problem separately then averaged: AE = |correct answer–child’s response|. High abso-

lute error indicates a response far from the actual sum and, thus, a more implausible response.

In contrast, low absolute error indicates that while a response may be incorrect it is likely con-

strained by an understanding of numerical magnitudes or due to minor error executing an

appropriate strategy (e.g., counting on one to few when using count-on).

A repeated measures ACNOVA on children’s average absolute error, controlling for their

numeracy screener score, found a condition by time interaction, F(1,26) = 6.63, p = .01, ηp
2 =

.20. As shown in Fig 2a, the mean absolute error of children in the linear-spatial condition

decreased from 2.53 (SD = 2.20) at pretest to 1.51 (SD = 1.77) at posttest, p = .01. In contrast,

children in the irregular condition exhibited no improvement in absolute error (from

M = 3.04, SD = 1.43 at pretest to M = 3.26, SD = 1.60 at posttest, p = .47. In other words, the

absolute error of children in the linear-spatial group decreased by about half a standard devia-

tion from pretest to posttest, (Hedges’ g = -.50), while the absolute error of children in the

Fig 2. Pretest to posttest improvement in (a) absolute error and (b) percent correct on addition problems for children who practiced with

irregular versus linear-spatial materials.

https://doi.org/10.1371/journal.pone.0208832.g002
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irregular condition essentially did not change (increased by only about one-tenth of a standard

deviation, Hedges’ g = .14).

It was possible that this finding was due to a greater number of correct trials in the linear-

spatial condition. To test this possibility, we calculated absolute error using only incorrect

items. A similar pattern of results was found: the condition by time interaction effect

remained, F(1,26) = 10.67, p = .003, ηp
2 = .29, and was explained by a decrease in implausible

responses in the linear-spatial condition (from M = 3.7, SD = 1.91 at pretest to M = 2.09,

SD = 1.67 at posttest; p = .01, Hedges’ g = -.87, but not in the irregular condition (from

M = 3.36, SD = 1.16 at pretest to M = 4.08, SD = 1.39 at posttest, p = .07, Hedges’ g = .47).

An examination of the percentage of problems for which children provided the correct sum

showed parallel results. A 2 (Condition: Irregular vs. Linear-Spatial) x 2 (Time: Pretest vs. Post-

test) ANCOVA on the percentage of addition problems children solved correctly found a time

by condition interaction, F(1,26) = 4.615, p = .05, ηp
2 = .14. Although children received no

practice with the addition problems used in the assessment, the mean percent of problems

children in the linear-spatial condition solved correctly increased substantially, from 33%

(SD = 23) at pretest to 55% (SD = 34) at posttest, p = .002, Hedges’ g = .74. In contrast, children

in the irregular condition did not exhibit improvement in the percent of problems solved cor-

rectly from pretest (M = 24%, SD = 25) to posttest (M = 28%, SD = 27), p = .52, Hedges’ g =

.15, (Fig 2b).

Strategies. Table 2 presents the frequency with which children used each strategy on the

arithmetic assessment at pretest and posttest by condition. Separate 2 (Condition: Irregular vs.

Linear-Spatial) x 2 (Time: Pretest vs. Posttest) repeated measure ANCOVAs were conducted

on the percentage of problems, controlling for numeracy screener, children used each strategy

category: (1) an ineffective strategy (“other” code), (2) count-all, and (3) an advanced mental

strategy (count-on, decomposition, and retrieval). The percentage of problems on which chil-

dren used an “other” strategy and a count-all strategy did not change from pretest to posttest

across or within either condition. For use of advanced strategies, however, there was a time

by condition interaction, F(1,26) = 5.87, p = .02, ηp
2 = .18. Children in the linear-spatial condi-

tion more than doubled the number of problems on which they used an advanced strategy,

from 19% of problems (SD = 33) at pretest to 52% of problems at posttest (SD = 45), p< .001,

Hedges’ g = .81. In contrast, children in the irregular condition did not show any change in

the frequency with which they used advanced strategies (Pretest: 14% (SD = 27); Posttest: 19%

(SD = 28), p = .46, Hedges’ g = .18).

The linear-spatial condition not only increased the frequency with which children

attempted advanced strategies, but also improved how accurately they executed them. A

Table 2. Pretest to posttest change in strategy choice for children in the irregular and linear-spatial conditions. Shown is the percent of problems (SD) on which each

strategy was used.

Irregular Materials Linear-Spatial Materials

Pretest Posttest Pretest Posttest

Other 51 (40) 49 (39) 39 (39) 22 (36)

Count All 35 (34) 32 (34) 42 (38) 36 (33)

Advanced Strategiesa 14 (27) 19 (28) 19 (33) 52 (45)

Count-On 11 (23) 13 (17) 16 (32) 44 (42)

Decomposition 0 (0) 0 (0) 1 (2) 1 (3)

Retrieval 4 (8) 6 (13) 2 (6) 7 (9)

aComposite of all three advanced strategies

https://doi.org/10.1371/journal.pone.0208832.t002
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repeated measures ACNOVA on the number of problems, out of 12 total, for which children

used an advanced strategy to reach a correct sum revealed a condition by time interaction,

F(1,26) = 5.37, p = .03, ηp
2 = .17. Children in the linear-spatial condition correctly used

advanced strategies on a greater number of problems at posttest than pretest, 4.50 (SD = 4.47)

vs. 1.50 (SD = 2.38), respectively, p< .001, Hedges’ g = .81. In contrast, children in the irregu-

lar condition did not show higher accurate use of advanced strategies at posttest verses pretest,

1.67 (SD = 2.99) vs. 1.07 (SD = 2.55), p = .26, Hedges’ g = .81. There were no pretest to posttest

changes or time by condition interactions in the accuracy in which children used other or

count-all strategies for children in either condition.

Finally, to gain a deeper understanding of children’s use of advanced strategies, we con-

ducted a MANCOVA testing for differences in the proportion of problems on which chil-

dren attempted to use the three advanced strategies: count-on, decomposition, and retrieval.

For the count-on strategy, the results indicated a time by condition interaction, F(1,26) =

5.48, p = .03, ηp
2 = .17. There were no condition differences at pretest, but at posttest, chil-

dren in the linear-spatial condition attempted count-on more frequently than children in the

irregular condition, p = .04, Hedges’ g = .95. There were no effects for use of decomposition

or retrieval.

Similarly, a MANCOVA examining changes in children’s accuracy of executing the

advanced strategies found only a time by condition interaction for count-on: F(1,26) = 6.24,

p = .02, ηp
2 = .19. Children in the linear-spatial condition accurately executed count-on on

a greater number of problems than children in the irregular condition at posttest, 3.79

(SD = 4.06) vs. 1.07 (SD = 1.67), respectively, p = .056, Hedges’ g = .86.

Mediation analysis: Condition influence on accuracy via strategy

To examine whether improvement in accuracy in the linear-spatial condition was mediated by

the increased use of advanced strategies in that condition, we conducted a mediation analysis.

We tested a model in which the percentage of problems on which children used advanced

strategies at posttest served as a mediator of the association between pretest condition (predic-

tor) and posttest absolute error (outcome), with pretest absolute error as a covariate on the

outcome. As noted earlier, we chose to examine absolute error as the outcome, rather than per-

centage correct, because using advanced strategies should lead both to a greater number of cor-

rect responses and responses closer to the actual sum even if minor errors in execution lead to

an incorrect response.

The mediation analysis was conducted using the SPSS macro PROCESS, which estimates

confidence intervals using bias-correcting bootstrapping [57]. Bootstrapping is advantageous,

particularly with small sample sizes, because it does not assume normal distribution of the

indirect effect. The analysis used 10,000 bootstrap samples with replacement from the sample

to calculate point estimates. The 95% confidence interval was then determined based on sam-

pling distribution of the point estimates [58]. The indirect effect is considered statistically sig-

nificant if the 95% confidence interval does not include zero [57].

Fig 3 presents the results of the mediation analysis. The direct effect of training condition

on addition absolute error (b = -1.07; p = .03; confidence interval (CI): [-1.99, -.15] was sub-

stantially lower than when the relation was examined without controlling for the percentage

of problems on which children used an advanced strategy (b = -1.44, B = -.41, p = .002). The

product of the coefficients (ab) for the indirect path from training condition to absolute error

by way of frequency of using an advanced strategy was significant (point estimate = -.46; 95%

bias-corrected; confidence interval (CI): [-1.47 to -.05], indicating that use of advanced strate-

gies mediated the relation between training condition and improvement in absolute error.
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Numerical magnitude knowledge as a predictor of advanced strategies

Finally, we tested the prediction that the linear-spatial materials would be most effective in

promoting advanced strategy execution for children with greater numerical magnitude knowl-

edge at the onset of instruction. We conducted a multiple regression with pretest Numeracy

Screener, condition (0 = irregular, 1 = linear-spatial), and a pretest Numeracy Screener by con-

dition interaction as predictors of the number of problems for which children accurately used

advanced strategies. After partialing out the variance for pretest accurate use of advanced strat-

egies, the Numeracy Screener by condition interaction was significant, b = .15, SE = .07, β =

.29, t = 2.13, p = .04. A positive relation was evident between the number of pairs on which

children had correctly identified the greater numeral at pretest and accurate use of advanced

strategies at posttest for children who had practiced with the linear-spatial materials (p = .03).

However, as shown in Fig 4, this association was not apparent for children who had practiced

with the irregular materials.

Discussion

The present findings demonstrate that the benefits of addition practice using linear-spatial

materials are greater than benefits of practice using materials with irregular groups of discrete

pictures. The linear-spatial materials instantiated the key properties of the mental number line

believed to contribute to arithmetic accuracy and fluency, whereas, the irregular materials did

not. Low-income kindergartners who practiced addition sums up to ten using linear-spatial

materials to represent the magnitudes of the addends showed marked improvement in their

solutions to novel addition problems, whereas those who practiced with irregular arrays did

not. Even when they answered incorrectly, children in the linear-spatial condition were more

likely to provide responses closer to the actual sum, than those in the irregular condition. Fur-

ther, children who practiced addition with the linear-spatial materials used advanced strate-

gies, particularly count-on, with greater frequency and accuracy than those who learned with

the irregular materials. This difference in strategy choice mediated the association between

training materials and arithmetic accuracy. These results converge with those of previous

research demonstrating the importance of alignment for learning and memory encoding

Fig 3. Improvement in advanced strategies as a mediator of the relation between condition and addition absolute error at posttest. Pretest absolute

error was used as a covariate on the outcome. +p< .10, �p< .05, ��p< .01.

https://doi.org/10.1371/journal.pone.0208832.g003

Linear materials and arithmetic learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0208832 December 31, 2018 12 / 19

https://doi.org/10.1371/journal.pone.0208832.g003
https://doi.org/10.1371/journal.pone.0208832


[11,59]. The implications of these findings for advancing instructional design theory as well as

early arithmetic instruction are discussed below.

The cognitive alignment framework

The cognitive alignment framework offers a theoretical view of instructional design. It posits

that the more precisely physical materials and learning activities align with the desired mental

representation, the more likely students are to acquire that representation. Key features of the

underlying mental representations must be instantiated in the physical materials for learning

of that representation to occur. This approach has successfully predicted which numerical

board games [11], patterning activities [60], and games for extending the count sequence [61]

would be most effective.

The present findings provide further evidence for the cognitive alignment framework by

extending its application to arithmetic. The increased use of a count-on strategy among chil-

dren in the linear-spatial materials condition, but not among those in the irregular materials

condition, is most noteworthy. Previous research has shown that improving children’s numer-

ical magnitude knowledge using linear number board games can, in turn, improve their mem-

ory of simple addition sums [42]. This was the first study to demonstrate that linear-spatial

materials can affect children’s procedural strategies for solving addition problems.

Further, unlike in previous studies, this finding cannot be attributed to differential

improvement in numerical magnitude knowledge. In both conditions, children’s accuracy

comparing symbolic magnitudes did not change from pretest to posttest. Rather, it was chil-

dren’s existing knowledge of numerical magnitudes prior to training that moderated improve-

ment. For those children who were trained with the linear-spatial materials, initial accuracy

when comparing symbolic numeric magnitudes predicted the frequency with which they used

advanced strategies at posttest, even after controlling for pretest strategy usage.

Fig 4. Conditional effect of pretest numerical magnitude knowledge on the number of problems accurately

answered via an advanced strategy on the arithmetic assessment at posttest. Predicted accuracy scores were

calculated at -1, 0, and 1 SD from the mean on the Numeracy Screener.

https://doi.org/10.1371/journal.pone.0208832.g004
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The increased use of count-on in the linear-spatial condition also cannot be attributed to

differences in practice. Children in both conditions were provided equivalent practice using

the count-on strategy during training. Practice of the strategy, in absence of an alignment (i.e.,

children with lower numerical magnitude knowledge in the linear-spatial condition or irregu-

lar materials) was not sufficient to promote its use. Thus, the pattern of results supported the

hypothesis that the alignment between the linear-spatial materials and children’s existing lin-

ear mental representations would activate children’s existing linear mental representations

and highlight the relevance of this knowledge for executing arithmetic strategies and con-

straining responses.

Besides extending the application of cognitive alignment to a new aspect of mathematics,

the present findings also demonstrate that it is useful in situations where there is an indirect

mapping via an intermediary representation underlying a desired procedural outcome (e.g.,

linear-spatial materials to linear magnitude representations to arithmetic strategies). Earlier

studies of the efficacy of the cognitive alignment framework have involved a direct mapping

between the materials and the desired outcome. For example, past research tested the extent to

which a linear number board game improves linear representations of numerical magnitude

[11,44]. In contrast, this study tested the hypothesis that greater learning would occur if

instructional materials instantiated the key properties of a mental representation that is critical

for, but not the same as, the desired outcome. Both sets of materials provided a representation

of addition as combining parts to form a whole–the direct outcome measure of the study.

However, only the linear-spatial materials instantiated the mental number line believed to

be involved in arithmetic. Thus, finding that the linear-spatial materials promoted greater

improvement, particularly for children who demonstrated better numerical knowledge prior

to instruction, could be attributed to the activation of this relevant prior knowledge.

This contribution is important given the wide range of research that demonstrates the

importance of activating relevant prior knowledge for strategy choice and conceptual change

[62–64]. Suggestions for activating students’ prior knowledge often involve probing ques-

tions (e.g., what does this remind you of? Do you know anything that can help?) or having

students generate their own solutions before receiving explicit direction (e.g., [65–67]).

These approaches may have limited utility with younger children who are less able to reason

about or articulate their thinking [68]. In the case of this study, cognitive alignment of the

physical materials activated relevant prior knowledge—the mental number line—without

the need for verbal explication.

Implications and future directions

These findings also have practical implications for classroom instruction. They provide evi-

dence that representing quantities linearly, rather than as random collections of objects or

drawings, would be most efficacious for arithmetic instruction in early elementary school.

There are various linear materials already available in classrooms that could be utilized and

whose efficacy might be tested. These include Unifix Cubes, where cubes are attached to repre-

sent larger quantities, and base-ten materials.

In addition to activating the linear mental representations of numerical magnitude, the lin-

ear-spatial materials might have been effective because they supported the comparison of mag-

nitudes. Comparison is a powerful learning mechanism that allows children to extract the

relevant properties of objects [13,69]. The correlation between length and magnitude was

more salient with the linear-spatial materials than that between surface area and magnitude in

the irregular materials. This difference between materials may have allowed children to more

easily compare the magnitudes of the addends. This comparison process may have promoted
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an understanding of relative magnitudes and of which sums could plausibly result from com-

bining two addends. Explicitly directing children to compare addends may strengthen the

value of linear-spatial materials.

The current findings also suggest that a deliberate focus on helping children learn the relative

magnitude of numerals before and while teaching arithmetic could maximize the benefits of

arithmetic practice. Previous correlational work has documented a relation between linear rep-

resentations of number and the use of more advanced strategies [70,71]. In this experimental

study, children in the linear-spatial materials condition who had the greatest numerical magni-

tude knowledge before training demonstrated the greatest increase in the use of count-on. Thus,

these findings and previous ones suggest that arithmetic instruction might be the most effective

for children who already have an adept representation of symbolic numerical magnitude.

In considering these possible implications, limitations of this study should be noted. The

current study included a limited number of children and examined short-term improvement.

Future research should test these materials with a larger and more diverse group of students

as well as examine whether the benefits persist over time. Further, while the measures used in

the study (solutions provided for arithmetic problems) are unlikely to be susceptible to bias, a

blinded replication of the study may be worthwhile.

In conclusion, the present study provides evidence that practicing arithmetic and a count-

on strategy with linear-spatial materials leads to improvement on unpracticed arithmetic prob-

lems, and higher spontaneous usage of advanced strategies. Children appeared to learn how

to generalize knowledge they gain about relative magnitudes and solving addition problems

beyond the training task. The effect sizes for the differences in absolute error and strategy

choice were medium to high [72], and were in the range of other effect sizes from similar

small-scale experiments (e.g., [73,74]). The findings support the importance of carefully

designing and selecting materials for instruction in order to maximize learning, and the appli-

cability of developmental psychology for instructional design.
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