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Purpose of Investigation

• Methane mapping for environmental monitoring
– Methane is a contributor to atmospheric heat trapping

– California law requires methane monitoring from likely sources

• Airborne Imaging Systems already exist to detect methane:
– AVIRIS (Visible-SWIR)

– HyTES (Thermal Infrared) 

• Investigate application of new technology 
– Utilize MODTRAN produced sensor reaching radiances to predict 

performance requirements
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HyTES Description
http://hytes.jpl.nasa.gov

• NASA JPL Hyperspectral Thermal 
Emission Spectrometer

• Airborne imaging spectrometer

• High efficiency, low scatter concave 
blazed grating
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Region of Methane Absorption Feature
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Figure taken from :

Hulley et. al., "High spatial resolution imaging of methane and other trace gases with the 

airborne Hyperspectral Thermal Emission Spectrometer (HyTES)," Atmospheric 

Measurement Techniques, vol. 9, no. 5, pp. 2393-2408, 2016. 



Thermal Imagery Potential Improvement

• Airborne thermal imagers, such as HyTES, require potentially 
heavy and expensive cooling systems

• Microbolometers are thermal detectors which can be used 
to create an FPA that does not require cooling

• DRS Technologies proposed microbolometer based system: 
Multi-Band Uncooled Radiometer Imager (MURI)

• MURI airborne prototype selected for funding under NASA 
Earth Science Technology Office (ESTO) Instrument 
Incubation Program (IIP) for 2017 - 2020
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MURI Description

• Multi-band Uncooled Radiometer Imager

– DRS Technologies proposed system for NASA ESTO’s Instrument Incubation 
Program

– Two designs: satellite mounted and an airborne demo system

– Multispectral 6 band instrument

– Includes coverage of Landsat 8’s 2 thermal bands (TIRS)

– Main goal to prove low cost microbolometer FPA are useable in the 
following applications:

• Potential Science Applications

– Soil Moisture Content

– Land Surface Climatology

– Ecosystem Dynamics

– Volcano Monitoring

– Hazard Monitoring

– Methane Detection  
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MURI Development
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• Schedule

– Completed 1st Year: Design and performance modeling

– 2nd Year: Construction of airborne demonstration instrument

– 3rd Year: Validation flights



Investigation Objectives

• Explore bandwidth sensitivity for spectral band allocated for 
methane detection in thermal

• Compile a brightness temperature difference dataset:
– Examine a system that successfully detects methane: NASA/JPL 

HyTES

– Perform radiative transfer simulations using MODTRAN 6

• Develop a radiometric model based on MURI:
– In-house capability to predict noise as a function of scene radiance 

– Noise floor calculations based on initial DRS 300 k Noise Equivalent 
delta Temperature (NEdT) prediction

9



Region of Methane Absorption Feature
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Figure taken from :

Hulley et. al., "High spatial resolution imaging of methane and other trace gases with the 

airborne Hyperspectral Thermal Emission Spectrometer (HyTES)," Atmospheric 

Measurement Techniques, vol. 9, no. 5, pp. 2393-2408, 2016. 
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Exploring HyTES Data

• Obtained data from 2016 paper
– Hulley et. al., "High spatial resolution imaging of methane and other trace gases with 

the airborne Hyperspectral Thermal Emission Spectrometer (HyTES)," Atmospheric 
Measurement Techniques, vol. 9, no. 5, pp. 2393-2408, 2016. 

• L3 data acquired, includes flagged images indicating NH3, CH4 presence

• Chosen July 8th 2014 @Kern River Oil Line 3 Run 1
– 2014-07-08.185512.KernRiverOil.Line3-Run1-Segment01-110000-level_1a

• Explored as empirical example of airborne LWIR methane detection
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Selected Flightline at Kern River Oil Fields

Zoom image rotated 

to HyTES orientation

(35.445282 N 

118.996964 W)

Google Maps image of flight line for HyTES

near Bakersfield, CA



Background and Plume Present Regions of 
Interest
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HyTES Band 10 (7.68 μm)
HyTES Grayscale Image w/Methane 

Detection

Methane detection map provided by 

JPL HyTES Team

Red: methane plume

Green: Background
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HyTES Average Spectra of ROIs Comparison
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HyTES Average Spectra of ROIs in Methane 
Absorption Band



MODTRAN6 Modeling Study Using 
Localized Plume Model 

• Baseline atmospheric model
– Greybody emitting surface

– Midlatitude Summer with water column 
scaled by 50%

• Local chemical plume model includes
– Plume distance from detector

– Thickness of plume

– Concentration of gas

– Temperature of plume

• Single MODTRAN run generates 
spectral radiance with and without 
plume
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Parameters

• Constants:
– Instrument height (15000 feet or 4.572 km)

– Background emitting surface temperature (305 K)

– Surface emission (0.95)

– Plume thickness (20 m)

– Plume height (570 m)

• Variables:
– Methane concentration within plume

– Temperature of methane plume

• Simulation Results:
– Brightness Temperature Differences
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• Methane concentrations chosen at: 
– 100 ppm, 500 ppm, 1000 -10000 ppm at 1000 ppm intervals

Determining Methane Concentrations for 
Plume Models
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Concentrations (ppm) Description

1-2 Background Atmospheric

1000 Threshold for safe exposure 
daily for 8 hours

50,000 Lower Explosive Limit

150,000 Upper Explosive Limit

500,000 Asphyxiation

-Government of Canada (2004). Agri‐facts. Methane (CH4) safety factsheet Agdex

729‐2.

-T. J. Blasing. US Department of Energy (2016). CDIAC. Recent Greenhouse Gas 

Concentrations. 



Assessing Methane Detection
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𝐿𝑒𝑓𝑓 =
 𝐿𝑀𝑂𝐷𝑅𝑑λ

𝑅𝑑λ

𝑇𝑎𝑝𝑝 =
ℎ𝑐

λ𝑘𝑏𝑙𝑜𝑔
ℎ𝑐

λ5𝐿𝑒𝑓𝑓

• Calculate band-averaged effective 
spectral radiance for single band from 
MODTRAN 6 simulation

• Calculate apparent temperature or 
brightness temperature from effective 
radiance

• Calculate temperature difference 
between ambient (no plume) and plume 
present cases

• Compare to Noise Equivalent delta 
Temperature (NEdT)



MURI Noise Modeling Summary 
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Preliminary MURI Noise Modeling 
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Methane Band NEdT Calculations

22

• Calculated using MODTRAN6 background case results as 
input radiance

• Parameters:
– Band center at 7.68 um 

– Instrument height (15000 feet or 4.572 km)

– Background Temperature (305 K)

– Surface Emission (0.95)

– Midlatitude summer 

– 50% water column concentration 

.05 um .1 um .2 um

0.70 0.70 0.71

Preliminary NEdT for MURI Methane Band in K



High Resolution MODTRAN6 output
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High Spectral Resolution Methane 
Absorption Region
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50 nm



Brightness Temperature as a Function of 
Methane Concentration
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• Displaying Brightness 
Temperature difference for 
a single temperature 
difference

• 50 nm band pass 

• Parameters
– Instrument height (15000 

feet or 4.572 km)

– Background emitting surface 
temperature (305 K)

– Surface emission (0.95)

– Plume thickness (20 m)

– Plume height (570 m)

Temperature Difference Not Detectable



Brightness Temperature as a Function of 
Plume Temperature
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• Displaying Brightness 
Temperature difference for 
a single methane 
concentration 

• 50 nm band pass 

• Parameters:
– Instrument height (15000 

feet or 4.572 km)

– Background emitting 
surface temperature (305 K)

– Surface emission (0.95)

– Plume thickness (20 m)

– Plume height (570 m)

Temperature Difference Not Detectable



Results and Trends

• As concentration increases, the temperature difference 
increases 

• At the current background and atmospheric temperature, 
absorbing plumes (negative plume temperature difference) 
tend to shows higher contrast

• Visualization of both trends shown via surface plots
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Detectable and Nondetectable Scenarios: 
Surface Plot Comparisons
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Detectable

Undetectable 



Conclusions

• For this arrangement we see the lowest concentration and 
temperature difference currently visible is: 
– 2000 ppm and -5 K with a 50 nm bandpass

• For an emitting plume the lowest plume temperature 
difference and concentration is: 
– 4000 ppm and +20 K with a 50 nm bandpass

• Of the 3 band passes examined, the 50 nm bandpass 
successfully detects in the highest number of scenarios
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Future Work

• Explore additional situations:
– Adjust baseline atmospheric model

– Adjust total water concentration in column

– Adjust column temperature profile

• Validate approach by producing results that estimate 
empirical data (HyTES)
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Preliminary Empirical Data and Model 
Comparison
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Preliminary Empirical Data and Model 
Comparison Methane Absorption Region

32

• Further exploration needed 



Review

• Study motivated by thermal imaging system that does 
require cooling

• Examined HyTES: a system currently used to detect methane 
in the thermal infrared

• Detailed the creation of a brightness temperature dataset

• Compared temperature difference to modeled NEdT of 
MURI system

• Displayed results for band pass sensitivity study indicating a 
50 nm bandpass detects methane in the highest number of 
scenarios
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