Integrating MODTRAN6 into the Plume Tracker Data Analysis Toolkit: A Progress Report

P. Penteado and V. J. Realmuto Jet Propulsion Laboratory, California Institute of Technology

> T. Perkins and A. Berk Spectral Sciences, Inc.

© 2018 California Institute of Technology. Government sponsorship acknowledged. Plume Tracker: Interactive Toolkit for Deep Analysis of TIR Image Data

Facilitates Analysis of Data from Multiple Instruments, with Ancillary Data from Multiple Sources

A. Graphic User Interface

- Import Image and Ancillary Data
- Identify Regions-of-Interest for Mapping
- Visualize Input Data and Retrieval Results

Display Tool Widget

Plume Tracker: Interactive Toolkit for Deep Analysis of TIR Image Data

B. Radiative Transfer Model Based on MODTRAN

- Component Architecture
- Communication via Standard COM Interface
- Custom Management and Formatting of Input Parameters for RT Model

Temperature Units	Kelvin		
Pressure Units	mb		
H2O Conc. Units	Dew Pt (K)		
03 Conc. Units	Vol Mixing Ratio (ppmv)		
Climatology Profile	Tropical		
20 Scaling Factor:	0.825		
3 Scaling Factor:	1.1 390.000		
02 Mixing Ratio (ppm-v):			
opopause Height (km):	10.0000		
ume Height (km):	1.75		
lume Thickness (km):	0.50		
ax Gas Conc (ppm-v):	100.000		
urface Temperature (K)	Calculate		

Atmosphere Profile Widget

Plume Tracker: Interactive Toolkit for Deep Analysis of TIR Image Data

C. Retrieval Procedures

- Surface Temperature and Emissivity
- SO₂, NH₃, and CH₄
 Concentrations
- H₂O Vapor and O₃ Scaling Factors
- Total Column Retrievals
- Optimized for 2-Component Retrievals (Temperature + Gas Concentration)

Plume Tracker Driver Widget

Misfit Calculation: Least Squares vs. Weighted Spectral Angle

Least Squares (LS):

- Designed to Fit Noisy Data
- Equal Weight to Outliers
- Not Ideal for Temperature Estimation

Weighted Spectral Angle (WSA):

- Observed and Model Radiance Spectra Represented as Vectors in Data Space
- Minimize Angle Between Vectors (Spectral Angle)
- Minimization Weighted to Favor Solutions with Model Spectrum > Observed Spectrum
- Optimum Temperature Estimate <u>Given Imperfect Knowledge of</u> <u>Atmospheric Composition</u>

Hash Table (Associative Array): Acceleration of Retrieval Algorithm

Key(1)	MODTRAN Spectrum(1)	
Key(2)	MODTRAN Spectrum(2)	
Key(3)	MODTRAN Spectrum(3)	
Key(4)	MODTRAN Spectrum(4)	

Key(i) = [zenith angle][surface elevation][surface temp] [H₂O factor][O₃ factor][SO₂ factor]

Scan Key List for Matches to Existing Keys

Associated Spectrum used for Matching Keys; New Table Entry for Unique Keys

More Efficient/Flexible than Table Look-Up

- Hold Tables Store Values Encountered in Scene, Not Every Possible Value
- Hash Tables Augmented or Purged Dynamically

Radiance Reconstruction

The observed radiance (outlined arrow) includes the surface radiance (red arrow), reflected sky radiance (yellow arrow), and upwelling path radiance (blue arrow)

The presence of a volcanic plume is expressed primarily through transmission $[\tau(\lambda)]$

Transmission, sky radiance $[D(\lambda)]$, and path radiance $[U(\lambda)]$ are independent of surface temperature $[T_o]$ and emissivity $[\varepsilon(\lambda)]$

Cache $\tau(\lambda)$, D(λ), and U(λ), and reconstruct observed radiance for variable T_o and $\varepsilon(\lambda)$

Summary of Performance Gains (AIST-11 Project)

	Domain Refinement (V.2.2.9)	Multi-Pass Brent Minimization (V.3.0)	Single-Pass Brent Minimization (V.3.2)	Reconstructed Radiance (V.4.2b)
Calls to RT Model ROI = 1296 pixels	264,398 (204 calls/pix)	144,508 (112 calls/pix)	58,361 (45 calls/pix)	29,485 (23 calls/pix)
No Hash Table	6.4 sec/pix	3.2 sec/pix	1.26 sec/pix	0.61 sec/pix
Hash Table	1.6 sec/pix	0.8 sec/pix	0.16 sec/pix	0.019 sec/pix
Success Rate Hash Table Utilization	77.4 %	77.0%	88.0%	97.8%

Investigation of Errors Introduced Through Use of the Hash Table Procedures, Relative to Native Radiative Transfer (RT) Calculations

- a) The relative difference in temperature estimates shows a negligible negative bias, with 94% of the differences falling between -0.025 and 0.00%
- b) The relative difference in SO₂ concentration estimates shows no bias, and 94% of the differences fall between ±5%

AIRS High-Resolution (2138 Channels) Spectra: Unique Identification of Plume Constituents

MODIS-Aqua 2009-06-16 AIRS BTD Spectra 2009-06-16 Model BTD Spectra

Sensitivity to Gas is a Function of Contrast Between Plume and Surface Temperatures

- Detection Threshold: Apparent Change in Temperature Must Exceed NE∆T of Instrument
- 0.25 0.5 K: Realistic NE Δ T for ASTER or MODIS
- Land vs. Sea Surface: 20 K Decrease in Temperature = 2X Increase in Detection Threshold

Retrieval of Surface Temperature and Gas Concentration

Temperature is Well-Constrained by Radiance Measurements, Relative to the Constraint on Gas Concentration

Simultaneous Retrieval of Temperature and Gas Concentration is Difficult:

- Misfit Surface Resembles "Taco Shell"
- Rapid Convergence on Temperature Estimate
- Little to No Convergence on Concentration Estimate

Cascading (Serial) Retrieval is a Better Approach

- Estimate Surface Temperature
- Estimate Gas Concentration

Validation Efforts

Kilauea May/2018 plumes

Summit - Lower East Rift Zone (LERZ) Eruption

- Fissures open in Leilani Estates on May 3
- SO₂ emission rates in excess of <u>15,000 t/d</u>
- Ash eruptions at Summit began May 15
- Ash plumes heights up to 10 km

ASTER VNIR 2018-05-06 21:01 UTC

ASTER TIR Color-Composite 2018-05-06 21:01 UTC

Summit SO₂ Plume

LERZ SO₂ Plume

MISR Analysis of Plume Height

Island of Hawai'i

Leilani Estates 🥂

Eruption plume

25 miles

Courtesy V. Flower, R. Kahn / NASA GSFC

N

- Multi-angle Imaging SpectroRadiometer 9 cameras provide stereoscopic coverage of plume
- MISR observations coincident with ASTER constrain plume height for SO₂ retrievals in the TIR

ASTER-Based Estimates of SO₂ Column Density

- Column Density can scale inversely with size of IFOV (pixel)
- Total Mass is sum of Column Density over all pixels
- Total Mass useful for comparing SO₂ retrievals based on different airborne or satellite instruments
- How do we compare satellite-based estimates with field measurements?

ASTER-Based Transect of SO₂ Plume - Analogous to Vehicle Traverse Beneath Plume

- Integrate Column Density across transect lines
- Average ASTER transect: 26.8 ± 1.4 kg/m (11:01 AM local time)
- HVO Vehicle Traverse: 32.8 kg/m (4:28 PM)

Integrating the MODTRAN6 engine into Plume Tracker

Previous Plume Tracker based on MODTRAN 3.5, with a custom API developed at JPL.

Instead of writing/reading files, Plume Tracker calls functions to communicate with MODTRAN.

MODTRAN6 API: SSI developed an IDL API, on top of the C API.

API example (MODTRAN 6)

modtran = obj_new('modlib')
inp = ModUtil.createInputDefault()
inp.NAME = 'SO2pImLOCAL'
inp.DESCRIPTION = 'Simulates a localized SO2 plume'
inp.options.IEMSCT = 'RT_THERMAL_ONLY'
inp.options.IMULT = 'RT_DISORT'
inp.aerosols.IHAZE = 'AER_RURAL'
inp.geometry.H1ALT = 100.0D
inp.atmos.M1 = 'ATM_MIDLAT_SUMMER'
inp.atmos.CO2MX = 380.0
inp.atmos.S_UMIX = [1.0, 1.0, 1.050, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

print, 'Case create: ',modtran.caseCreate() ;create one case
print, 'Input set: ',modtran.caseInputSet(inp) ; configure the case

```
if modtran->execute() eq 1 then begin
  outamb = modtran->outputScanned(0)
  outplm = modtran->outputScanned(0,LOS=1) ;local plume
endif
```

Improvements with MODTRAN6

- More accurate band models and scattering
- Discrete chemical plume, no need to make a plume layer
- Multiple spectral resolutions
- VSWIR and TIR modelling of heterogeneous plumes
- More portable and practical object-based IDL API

Current status

Forward modelling already implemented

Inversion in progress, depends some API additions changes to obtain RT outputs and set some inputs.

